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matically ‘‘jump’’ to local ones as discontinuities are en-
countered. Hencethe schemesare nonlinearand Gibbsphe-We develop here compact high-order accurate nonlinear schemes

for discontinuities capturing. Such schemes achieve high-order spa- nomenon is avoided. Two propositions have been proved,
tial accuracy by the cell-centered compact schemes. Compact adap- which show that in order to obtain uniformly high-order ac-
tive interpolations of variables at cell edges are designed which curate compact interpolants, the interpolations of variables
automatically ‘‘jump’’ to local ones as discontinuities being encoun-

at cell edges should be prevented from crossing discontinu-tered. This is the key to make the overall compact schemes capture
ous data, such that the accuracy analysis based on the Taylordiscontinuities in a nonoscillatory manner. The analysis shows that

the basic principle to design a compact interpolation of variables series expanding is valid over all grid points.
at the cell edges is to prevent it from crossing the discontinuous The organization of this paper is as follows. Section 2
data, such that the accuracy analysis based on Taylor series ex- presents the basic compact schemes for scalar hyperbolic
panding is valid over all grid points. A high-order Runge–Kutta

conservation law, including a fourth-order compact ap-method is employed for the time integration. The conservative prop-
proximation to the first derivative, the compact adaptiveerty, as well as the boundary schemes, is discussed. We also extend

the schemes to a system of conservation laws. The extensions to interpolations of variables at cell edges, the analysis of the
multidimensional problems are straightforward. Some typical one- interpolations, and the time integration. In Section 3, we
dimensional numerical examples, including the shock tube prob- discuss the boundary and near boundary algorithms and
lem, strong shock waves with complex wave interactions, and

the conservative property of the schemes. The extension‘‘shock/turbulence’’ interaction, are presented. Q 1997 Academic Press

to Euler equations is given in Section 4. Section 5 contains
numerical experiments, including solutions to a linear sca-
lar equation with different initial conditions, the solution1. INTRODUCTION
to Burgers equation, the shock-tube problem, interactions

Although compact finite difference schemes have advan- of blast waves, and ‘‘shock/turbulence’’ interactions by
tages over traditional finite difference schemes, including solving one-dimensional Euler equations. Concluding re-
the relatively high-order of accuracy using a compact sten- marks are presented in Section 6.
cil and a better resolution for high frequency waves [1–3],
the grid-to-grid oscillation was encountered as being ap-

2. DERIVATIONS OF THE SCHEMESplied to capture discontinuities due to their linear property.
Harten [4] first studied this problem, but his numerical

In this section we consider numerical approximations toresults oscillate to the point of being meaningless near
the solution of the scalar conservation law,discontinuity in some cases. Recently Cockburn and Shu

[5] developed nonlinear compact schemes. They followed
the TVD (total variation diminishing) idea with a modified ­u

­t
1

­f (u)
­x

5 0, (1)
limiter, such that the schemes have the so-called uniform
high-order accuracy even at local extrema. The nonphysi-
cal oscillation, however, still appeared for their fourth- subject to the given initial condition
order scheme.

In this paper, compact high-order accurate nonlinear
u(x, 0) 5 u0(x). (2)schemes are developed. As we know, compact schemes are

global. That is, the approximation to a derivative at one grid
point involves the whole line of variables. If they are applied We assume that the initial-value problem (IVP) (1), (2)

is well-posed in the sense that the solution u depends con-directly to discontinuous data, the spurious oscillations are
inevitable near discontinuities. In our compact schemes, tinuously on the data (2) and that this solution is piecewise

smooth, with at most a finite number of discontinuities.compact adaptive interpolations are designed which auto-
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2.1. Compact Scheme for a Derivative the resolution characteristics of the interpolation schemes
when combined with those of cell-centered differentiationLet uj 5 uh(xj , t), xj 5 jh; denote a numerical approxima-
determine the resolution characteristics of the overalltion to the solution of Eq. (1). With a semidiscrete finite
scheme.difference scheme in mind, we note that, at every node xj, Substituting (8) into (4) and expanding both sides of (4)Eq. (1) can be discretized as
in Taylor series at grid point j, we get

S­u
­tDj

5 2f 9j , (3)
f 9j 5 S­f

­xDj
1 a

d(xj11/2) 2 d(xj21/2)
h

hr

where f 9j is the approximation to the space derivative. In
1

17
5280 S­5f

­x5D
j
h4 1 O(h6, hr11).this paper, a compact finite difference scheme for this de-

rivative on a cell-centered mesh is used. In the fomulation
presented below the nodes on which the derivative is evalu-

It is obvious that the compact scheme (4) is fourth-orderated are staggered by a half-cell (h/2) from the nodes
accurate if r $ 4 and d(x) is Lipschitz continuous. In theon which the function values are prescribed. Such grid
case for r , 4, the scheme is rth-order accurate.configurations arise naturally from a finite-volume discreti-

zation of conservation equations. As shown in [1], these
cell-centered schemes have better resolution characteris- 2.2. Compact Adaptive Interpolations
tics for high wave numbers than the schemes based on grid

As discussed in above subsection, when f(u) is a nonlin-node values.
ear function of u, the approximation of f̂ j11/2 to O(hr)Starting from an approximation of the form
requires knowledge of the solutions uR and uL to the same
order of accuracy at cell edge j 1 As. We solve this problem
by compact adaptive interpolations.k f 9j21 1 f 9j 1 k f 9j11 5

a
h

( f̂ j11/2 2 f̂ j21/2 ) (4)
The basic interpolations for uL j11/2 and uL j11/2 are the

fifth-order tridiagonal left- and right-biased compact in-
and matching the Taylor series up to fourth order, we terpolants:
obtain a fourth-order cell-centered compact scheme with
the coefficients a and k defined as

As uL j21/2 1 uL j11/2 1 a;A uL j13/2

a 5 Dk (3 2 2k), k 5 ssA . (5) 5 a;A uj21 1 uj 1 As uj11 2 12
5! h5 1 O(h6), (9)

a;A uR j21/2 1 uR j11/2 1 As uR j13/2The truncation error (on the r.h.s. of (4)) is (17/5280) h4

­5 f/­x 5. 5 As uj 1 uj11 1 a;A uj12 1 12
5! h5 1 O(h6). (10)

There are many ways to evaluate the numerical flux
f̂ j11/2 at cell edge j 1 As. For example, the point values f

The right-hand sides of the interpolants are a three pointnear node j can be directly used for the interpolations at
stencil and over two grid cells, i.e., Ij21 and Ij (Ij 5the cell edge. In this paper, however, Roe’s approximate
[xj , xj 11]) for uL . If a discontinuity is contained in oneRiemann solver is used as the building block,
of these cells, the interpolant (9) will cause nonphysical
oscillations. We should prevent the interpolation fromf̂ j11/2 5 As [ f (uR ) 1 f (uL ) 2 uãu(uR 2 uL )] j11/2 , (6)
crossing discontinuities, so that the following two interpo-
lants are derived as candidates for uL j 11/2 :

where ã is the characteristic speed obtained by some aver-
age of uR and uL , such that

a1uL j21/2 1 uL j 11/2 5 a1u j 22 1 b1uj 21 1 c1uj

(11)
1 3

3! (a1 2 5)h3 1 O(h4),f (uR) 2 f (uL) 5 ã(uR 2 uL) (7)

is satisfied for any uR and uL . if a discontinuity exists in cell Ij , and
When uR j 11/2 and uL j 11/2 are interpolated to rth-order

accuracy such that
uL j11/2 1 a2uL j 13/2 5 a2u j 1 b2uj 11 1 c2uj12

(12)
1 3

3! (a2 2 1)h3 1 O(h4)f̂ j11/2 5 f (uj11/2) 1 d(xj11/2)hr 1 O(hr11) (8)
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in case a discontinuity is contained in cell Ij 21 . The parame- The interpolation for uLj11/2 is selected as
ters in (11), (12) will be discussed later.

The left-hand sides of (11) and (12) contain only two a1uL j21/2 1 uL j11/2 5 a1uj22 1 b1uj21 1 c1uj ,
terms. This is the key to make the global compact interpola-
tion a local one near discontinuities. We will also discuss if KL 5 1;
this feature in the next subsection.

Thus, the task in hand is how to choose these inter-
As uL j21/2 1 uL j11/2 1 a;A uL j13/2 5 a;A uj21 1 uj 1 As uj11 ,

(18)polants. We solve this problem by choosing the smoothest
stencil as that of ENO reconstructions [6] with some

if KL 5 2; ormodifications. Define the first- and second-order differ-
ences

uL j11/2 1 a2uL j13/2 5 a2uj 1 b2u j11 1 c2u j12,

if KL 5 3.D1 j 5 uj11 2 uj ,
(13)

D2 j 5 uj11 2 2uj 1 uj21 .
The interpolation for uR j11/2 is obtained in a similar

manner; i.e., we first determine KR:

The interpolants (9), (11), and (12) can be written as

As uLj21/2 1 uLj11/2 1 a;A uLj13/2 KR 551, if buD1 j11u # uD1 j u, uD2 j12u , buD2 j11u;

3, if uD1j u , buD1 j11u, uD2 ju , buD2 j11 u;

2, otherwise.

(19)

5 AaH; uj 1 a;A (4D1 j21 1 5D2 j ) (14)

Thenor

uR j11/2 1 a1uRj13/2 5 a1uj13 1 b1uj12 1 c1uj11 ,

5 AaH; uj 1 a;A (4D1 j 1 D2 j ),
if KR 5 1;

a1uL j21/2 1 uL j11/2

a;A uR j21/2 1 uR j11/2 1 As uR j13/2 5 As uj 1 uj11 1 a;A uj12 ,
(20)5 (1 1 a1)uj 1 Ak [(4 2 4a1) D1 j21 1 (3 2 a1) D2 j21] (15)

if KR 5 2; or
uL j11/2 1 a2uL j13/2

a2uR j21/2 1 uR j11/2 5 a2uj11 1 b2u j 1 c2u j21,
5 (1 1 a2)uj 1 Ak [(12a2 1 4) D1 j 1 (3a2 2 1) D2 j11]. (16)

if KR 5 3.

We see that the right-hand sides of above interpolants The parameters in above interpolants are given by
consist of first and second differences. As we know, the
absolutes of D1 , D2 can be taken as measures of the

a1 5 (3 2 a1)/8, b1 5 (6a1 2 10)/8, c1 5 (3a1 1 15)/8;smoothness of the stencil. The smaller the uD1u and uD2u,
the more smooth the ‘‘grid stencil.’’ We choose the stencil a2 5 (3 2 a2)/8, b2 5 (6 1 6a2)/8, c2 5 (3a2 2 1)/8,
on which uD1u and uD2u are the minimum within the cells (21)
involved. This can be finished by determining a switch
function KL for uLj11/2, except the parameter b. We take 0 # b # 1 in order that

the basic interpolation (9) and (10) are used as many as
possible. If b 5 0, the fifth-order interpolations (9) and
(10) being used at all grid points, a linear fourth-order
scheme is recovered which can be used for problems free
of discontinuities. We found b 5 0.5 works well in mostKL 551, if buD1j21u # uD1 j u, uD2 j21u , buD2 j u;

3, if uD1ju , buD1 j21u, uD2 j11u , buD2 j u;

2, otherwise.

(17)
of our numerical experiments given in Section 5.

The above interpolation is third-order accurate as a1 ?
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FIG. 1. Numerical solutions of linear equation with different initial conditions.

5 and a2 ? 1. The numerical flux (6), together with the need to invert a pentadigonal matrix (which will be dis-
cussed in our next paper). In this paper, we simply addabove adaptive interpolations, is third-order accurate,
one point on the right-hand side; i.e., uj 23 is added in (11)
and uj 13 is added in (12). Hence a fourth-order interpola-f̂ j11/2 5 f (uj11/2) 1 O(h3), (22)
tion is obtained,

and the final accuracy of space derivative in Eq. (3) is third a3uL j21/2 1 uL j11/2 5 a3uj23 1 b3uj22 1 c3uj21 1 d3uj ,
order also.

It is obvious from (11), (12) that if a1 5 5 and a2 5 1, the if KL 5 1;
interpolations are fourth-order accurate. Unfortunately,

As uL j21/2 1 uL j11/2 1 a;A uL j13/2 5 a;A uj21 1 uj 1 As uj11 ,
(23)

these parameters cannot be used in practice, for the inver-
sion of the tridiagonal matrix equations (27) requires the

if KL 5 2; ordiagonal elements be dominant; i.e., a1 , 1 and a2 , 1.
In order to get fourth-order accurate interpolations, we uL j11/2 1 a4uL j13/2 5 a4uj 1 b4u j11 1 c4u j12 1 d4uj13 ,
have to add one point value on either side of the interpo-
lants (11), (12). If being added in the left-hand side, we if KL 5 3;
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FIG. 2. Ly, L1, and L2 errors as a function of grid point number. T 5 2, CFL 5 0.4: (a) u0 5 sin(2fx); (b) u0 5 sin4(2fx).

the interpolation for uR j11/2 is modified in the same way, where

uR j11/2 1 a3uRj13/2 5 a3uj14 1 b3uj13 1 c3uj12 1 d3uj11 , a3 5 (a3 2 5)/16, b3 5 (21 2 5a3)/16,

c3 5 (15a3 2 35)/16, d3 5 (5a3 1 35)/16;

a4 5 (5 2 a4)/16, b4 5 (15 1 9a4)/16,

c4 5 (9a4 2 5)/16, d4 5 (1 2 a4)/16

if KR 5 1;

a;A uR j21/2 1 uR j11/2 1 As uR j13/2 5 As uj 1 uj11 1 a;A uj12 ,
(24)

with a3 , 1 and a4 , 1. The numerical flux is fourth-if KR 5 2; or
order accurate,

a4uR j21/2 1 uR j11/2 5 a4uj11 1 b4u j 1 c4u j21 1 d4u j22 , f̂ j11/2 5 f (uj11/2) 1 O(h4) (25)

and a fourth-order accurate scheme is obtained.if KR 5 3,

FIG. 3. Numerical solutions of linear equation with (a) u0 5 sin(2fx), (b) u0 5 sin4(2fx).
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tees that the compact adaptive interpolation has the follow-
ing tri-digonal matrix form:

3
1 a2

. . .
. . .

. . .

a1 1

1 a2

. . .
. . .

. . .

43
uL3/2

...

uL j11/2

uL j13/2

...

4
53

a2 b2 c2

. . .
. . .

. . .
. . .

a1 b1 c1

a2 b2 c2

. . .
. . .

. . .
. . .

43
u1

...

uj21

uj

uj11

...

4 . (27)FIG. 4. The result of compact interpolation for uLj11/2.

It should be pointed out that at some grid points above
compact adaptive interpolations will result in d(x) in (8)
failing to be Lipschitz continuous, such that the accuracy Hence the values of interpolations, (u1/2 , ..., uj11/2) and
will be one order lower at these points. We expect the (u1/2 , ..., uj11/2), are independent of each other, and the
number of these points to remain bounded as h R 0. global compact interpolation is divided into two local parts

by the discontinuity. In every part, the Taylor series expan-
2.3. Analysis of the Compact Adaptive Interpolations sion is valid, which guarantees that q 5 v 1 O(h3).

In the case that there are several divided jump disconti-The principle of designing our compact adaptive interpo-
nuities, if h0 is small enough, such that there are enoughlation is that the interpolants do not cross discontinuities,
grid points between discontinuities, the above proof issuch that the accuracy analysis based on Taylor series
valid also.expansion is valid over all grid points. In other words, one

reason for nonphysical oscillation caused by fixed stencil Of course, the interval of interpolation, [xjmin
, ..., xjmax

],
interpolation is that the Taylor series expansion is applied may contain discontinuities, which may be encountered in
for the discontinuous data. We will prove that our compact two situations. One is that a discontinuity is too weak
adaptive interpolations do not encounter this problem and numerically, for example, at the initial stage of the shock
have uniform high-order accuracy. wave generation, such that uD1u and uD2u are smaller than

Let q(xj11/2 ; v(x)) denote the left-state third-order com- those of smooth regions. Another is that a grid point, for
pact adaptive interpolant of v(x) at xj11/2 and [xjmin

, ..., example xj , is attached at a ‘‘discontinuity.’’ The disconti-
xjmax

] denote the interval of the right-hand side of the nuity for the former situation can be treated numerically
interpolation. There are two cases which should be con- as a smooth region and would not cause much oscillation
sidered. due to its weakness. The latter case is usually encountered

in the numerical calculations, which should be analyzedPROPOSITION 2.1. For any piecewise smooth v(x), possi-
in detail. As we know, a numerical solution is only anbly having jump discontinuities, there exists an h0 . 0, such
approximated one. If a jump discontinuity is simulatedthat, for all h # h0 and all j,
numerically as a region with a very sharp gradient, for
example, one grid point attached at the discontinuity, itq(xj11/2 ; v(x)) 5 v(xj11/2) 1 O(h3). (26)
can be taken as a correct analogy to the mathematical
discontinuity. Based on this consideration, we haveProof. Consider the interval xj # x # xj11 and the

interpolation at cell edge xj11/2. If v is smooth over the full PROPOSITION 2.2. For any smooth v(x), possibly having
interval of interpolation [xjmin

, ..., xjmax
] standard interpola- monotone regions with very strong gradient (analogous to

tion results imply q 5 v 1 O(h3). If a single discontinuity numerical jump discontinuities), there exists an h0 . 0, such
exists in the interval xj # x # xj11 , such that the differences that, for all h # h0 and all j ,
D1 j , D2 j , and D2 j11 are very much larger than those of

q(xj11/2 ; v(x)) 5 v(xj11/2) 1 O(h3). (28)neighbor grid points, the definition of q(xj11/2, v) guaran-
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Proof. Assume the interval xj 21 # x # xj 11 is a single thus effectively ‘‘separating’’ the spatial and temporal op-
erations for computing solutions of (1).monotone region with a very strong gradient and xj 21 and

xj 11 are its edges. This is an analogy of a numerical disconti- In [7], Runge–Kutta methods are presented for the time
discretization of ordinary differential equations which arenuity with one grid point xj attached. Consider the left-

state interpolation at xj 21/2 , xj 11/2 , and xj 23/2 . By the as- of high-order accurate and total-variation diminishing
(TVD), in the sense that the temporal operator itself doessumption we know that uD1 j 21u, uD1 j , uD2 j 21u, and uD2 j 11u,

are larger than those of neighbor grid points. Hence, the not increase the total variation of the solution. The third-
order one of these Runge–Kutta methods is employed incompact adaptive interpolation must have the following

matrix form: this paper that reads

u(1) 5 un 1 DtL(un)

u(2) 5 Dfun 1 Afu(1) 1 AfDtL(u(1)) (31)

un11 5 Adun 1 Sdu(2) 1 SdDtL(u(2))3
1 a2

. . .
. . .

. . .

a1 1

As 1 a;A

1 a2

. . .
. . .

. . .

4 3
uL3/2

...

uL j21/2

uL j11/2

uL j13/2

...

4 with CFL # 1.
There are also fourth- and fifth-order versions with some

technical complexity [7].

Remark. It is difficult at present to prove theoretically
the convergence of the numerical solutions due to the
nonlinearity of schemes. We resort to the numerical exam-
ples to test their performance in Section 5.

3. BOUNDARY SCHEMES AND CONSERVATIVE5 3
a2 b2 c2

. . .
. . .

. . .
. . .

a1 b1 c1

a;A 1 As

a2 b2 c2

. . .
. . .

. . .
. . .

43
u1

...

uj22

uj21

uj

uj11

...

4 .
FORMULATION FOR THE FIRST DERIVATIVE

A natural consequence of using compact scheme (4) is
that the boundary and near boundary grid points may
require special procedures to compute the derivatives, as
well as the left and right state interpolations. These approx-(29)
imations are, of necessity, one-sided. In the description
below, j 5 1 and j 5 N represent the left and right boundaryWe can see that the interpolation is divided into three
points. We follow the way that is widely used in the tradi-local regions. The interpolations in domains [x3/2 , ...,
tional finite difference schemes, i.e., calculating the deriva-xj 21/2] and [xj13/2, ..., xN21/2] do not cross the very strong
tives at interior points (2, 3, ..., N 2 2, N 2 1), and interpo-gradient region [xj 21 , xj 11], the same as Proposition 2.1;

thus q 5 v 1 O(h3) holds in all these three regions.
If one more grid point is contained in the very strong

gradient region, it can be proved in the same way.

The fourth-order interpolant (23)–(24) has the same
structure as the third-order one, so the uniform high-order
accuracy is also expected as the numerical examples in
Section 5 shown.

2.4. Time Discretization

We treat (3) as an ordinary differential equation for the
purpose of time discretization, using a ‘‘method-of-line’’
approach. Along any t 5 constant line, the right-hand side
of (3) is strictly a spatial operation in u, and we rewrite this
equation, for fixed t, in the abstract operator-product form

­u
­t

5 L(u), (30)
FIG. 5. Numerical solution of Burgers equations.
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FIG. 6. Numerical solutions of Sod problem.

lating or specifying the values at the boundary points j 5 We write the scheme (4) in matrix form,
1 and j 5 N.

The first derivative at the near boundary point j 5 2 Af 9 5
1
h

Bf̂, (35)
and j 5 N 2 1 may be obtained by

f 92 1 k1 f 93 5
1
h

(a1 f̂ 3/2 1 b1 f̂ 5/2 1 c1 f̂7/2) (32)

A 53
w1 w1k1

w2k w2 w2k

k 1 k

k 1 k
. . .

. . .
. . .

4 ,f 9N21 1 k2 f 9N22 5
1
h

(a2 f̂ N21/2 1 b2 f̂ N23/2 1 c2 f̂ N25/2), (33)

where

a1 5 21, b1 5 1 2 k1 , c1 5 k1;

a2 5 1, b2 5 1 2(1 2 k2) , c2 5 2k2 .

B 53
w1a1 w1b1 w1c1

2w2a w2a

2a a

2a a
. . .

. . .

4 ,
If k1 5 k2 5 21, they are third-order accurate.

The variables at the near boundary cell edges can be
obtained by fixed stencil interpolations that involve the
pointwise variables available.

An important requirement in developing high-order ap- and f 9, f̂ are N 2 2, N 2 1 vectors, respectively. Two
proximation to the spactial derivatives is the global conser- weights, w1 and w2 , are introduced at near boundary points.
vation property. Lele [1] discussed this problem for com- In order to satisfy the global conservation constraint it is
pact schemes. We follow his way to give an approach for sufficient to require that columns 2 through N 2 2 of the
constructing difference approximation of our schemes at matrix B sum exactly to zero. This ensures that only the
the near boundary points which satisfy a discrete form of boundary points contribute to the near boundary flux. Thus
global conservation constraints. the weights w1 and w2 are determined as

Integrating (1) over the domain [a, b] yields
w1 5 a, w2 5 1 2 k1 .

d
dt

Ex5b

x5a
u(x, t)dx 5 f u(x5a,t5t) 2 f u(x5b,t5t) , (34) Another near boundary point, N 2 1, can be treated in a

similar manner.

Remark. If inverse boundary conditions can be usedshowing that the total u in the domain changes only due to
in calculations, the boundary formulation is simple, forthe flux of u at the boundary. This is a global conservation
we knowstatement. We seek a formulation for the near boundary

points such that the global conservation law (34) has a
f 90 5 cf 92 , (36)discrete analogy for the difference approximations.
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where c is a constant and may be determined by inverse
boundary conditions. By inserting (36) into (4), the tridi-

r1 5 1
1

u 2 c

H 2 uc
2, r2 5 1

1

u

Asu22, r3 5 1
1

u 1 c

H 1 uc
2; (39)agonal matrix is solvable. This treatment is used in the

solutions of the Euler equation in Section 5.

4. THE EXTENSION TO THE EULER EQUATIONS here
OF GAS DYNAMICS

H 5
e 1 p

r
5

c2

c 2 1
1

1
2

u2 (40)A special advantage of our schemes, as well as finite
difference ENO schemes [7, 8], is their relative simplicity
in multidimensional problems. The schemes developed in is the enthalpy.
Sections 2, 3 can be applied in each dimension individually, The corresponding left-eigenvectors bi-orthonormal to
keeping all other variables fixed. Thus, in this section we (39) are
only describe how to extend these schemes to one dimen-
sional Euler equations of gas dynamics. The extensions to l 1 5 As(b2 1 u/c, 2b1u 2 1/c, b1),
multidimensional problems are straightforward.

l 2 5 As(1 2 b2, b1u, 2b1), (41)For a polytropic gas, the governing equations are

l 3 5 As(b2 2 u/c, 2b1u 1 1/c, b1),
­U
­t

1
­F
­x

5 0 (37)
where

with b1 5 (c 2 1)/c2

(42)
b2 5 Asu2b1.U 5 [r, ru, e]T,

F 5 [ru, ru2 1 p, (e 1 p)u]T, Roe’s approximate Riemann solver,

p 5 (c 2 1)(e 2 Asru2).
F̂j11/2 5 As[F(UR) 1 F(UL) 2 uÃu(UR 2 UL)]j11/2, (43)

Here r, u, p, and e are the density, velocity, pressure, and
is also applied to get the derivatives ­F/­x in (4). Wheretotal energy respectively; c is the ratio of specific heats.
Ã is calculated by Roe’s averages of UL and UR,The eigenvalues of the Jacobian matrix ­F/­U are

ũ 5 (uL 1 uR ÏrR/rL)/(1 1 ÏrR/rL)l1 5 u 2 c, l2 5 u, l3 5 u 1 c, (38)

H̃ 5 (HL 1 HR ÏrR/rL)/(1 1 ÏrR/rL) (44)
where c 5 (cp/r)1/2 is the sound speed.

c̃ 5 (c 2 1)1/2ÏH̃ 2 Asũ2.The corresponding right-eigenvectors are

FIG. 7. Numerical solutions of Sod problem (component-wise interpolation).
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FIG. 8. Numerical solutions of interaction blast waves: (a) T 5 0.010; (b) T 5 0.016; (c) T 5 0.026; (d) T 5 0.028; (e) T 5 0.030; (f) T 5 0.032;
(g) T 5 0.034; (h) T 5 0.038.

The cell-edge values, ULj11/2 and URj11/2, can be obtained To avoid too many collisions of the discontinuities, we
may adopt the characteristic interpolations in the calcula-from (17)–(24) by interpolation of the components of U.

These componentwise interpolations are simple and effi- tions. The variables ULj11/2 and URj11/2 are decomposed
into three locally defined scalar characteristic variables,cient, although not suitable, as the discontinuities collide [6].
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FIG. 8—Continued

using the usual l 2 inner product. The variables U p
Lj11/2 are

ULj11/2 5 O3
p51

(l p
j ? U p

Lj11/2)r p
j (45) interpolated from (17), (18) (third-order) or (17), (23)

(fourth-order) with the exception that u, D1j , and D2j are
replaced by U, l p

i(Lj11/2) ? D1j , and l p
i(Lj11/2) ? D2j , respectively.URj11/2 5 O3

p51
(l p

j11 ? U p
Rj11/2)r p

j11 (46)
And we interpolate U p

Rj11/2 by (19), (20) or (19), (24),
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FIG. 8—Continued

except that u, D1j and D2j are replaced by U, l p
i(Rj11/2) ? D1j , U p

L j11/2 1 a2U
p
L j13/2 5 a2Uj 1 b2U j11 1 c2U j12 ,

and l p
i(Rj11/2) ? D2j , respectively. Where the subscripts,

if KL 5 3;i(Lj 1 1/2) and i(Rj 1 1/2), are functions of cell-edge
nodes. We take i(Lj 1 1/2) 5 j and i(Rj 1 1/2) 5 j 1 1
for the left- and right-biased consideration. For example,
the third-order interpolations of U p

Lj11/2 and U p
Rj11/2 read

KR 5 5
1, if bul p

i(Rj11/2) ? D1j11u # ul p
i(Rj11/2) ? D1ju,

ul p
i(Rj11/2) ? D2j12u , bul p

i(Rj11/2) ? D2j11u;

3, if ul p
i(Rj11/2) ? D1ju , bul p

i(Rj11/2) ? D1j11u,
ul p

i(Rj11/2) ? D2ju , bul p
i(Rj11/2) ? D2j11u;

2, otherwise;

(49)

KL 5 5
1, if bul p

i(Lj11/2) ? D1j21u # ul p
i(Lj11/2) ? D1ju,

ul p
i(Lj11/2) ? D2j21u , bul p

i(Lj11/2) ? D2ju;

3, if bul p
i(Lj11/2) ? D1ju , bul p

i(Lj11/2) ? D1j21u,
ul p

i(Lj11/2) ? D2j11u , bul p
i(Lj11/2) ? D2ju;

2, otherwise;

(47)
U p

R j11/2 1 a1U
p
R j13/2 5 a1Uj13 1 b1Uj12 1 c1Uj11 ,

if KR 5 1;

a1U
p
L j21/2 1 U p

L j11/2 5 a1Uj22 1 b1Uj21 1 c1Uj , a;A U p
R j21/2 1 U p

R j11/2 1 As U p
R j13/2 5 As Uj 1 Uj11 1 a;A Uj12 ,

(50)
if KL 5 1;

if KR 5 2; or
As U p

L j21/2 1 U p
L j11/2 1 a;A U p

L j13/2 5 a;A Uj21 1 Uj 1 As Uj11 ,
a2U

p
R j21/2 1 U p

R j11/2 5 a2Uj11 1 b2U j 1 c2U j21 ,(48)

if KL 5 2; or if KR 5 3.
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5. NUMERICAL TESTS In Fig. 4, the result of the fourth-order compact interpo-
lant for uLj11/2 is given.

To test the behavior of the schemes developed in the
EXAMPLE 2. The Burgers equation is solved in this ex-above sections, we applied them to several examples. The

ample:fourth-order scheme is used in Examples 1–3 with a3 5
a4 5 0.5 and b 5 0.5 for Examples 1–2 and a3 5 a4 5 0,
b 5 0.5 for Example 3. The third-order scheme is employed

ut 1 Su2

2 Dx
5 0 (58)in the last two examples.

EXAMPLE 1. We solve the linear equation u(x, 0) 5 sin(fx 1 f). (59)

For this nonlinear problem, a stationary shock is gener-ut 1 ux 5 0, 21 # x # 1, (51)
ated at t 5 1/f. The numerical solution with 16 grid points

u(x, 0) 5 u0(x), u0(x) with period 2. and CFL 5 0.5 at t 5 0.6 is shown in Fig. 5. The shock is
also captured nonoscillatorily.

Four initial conditions u0(x). The first three are used by EXAMPLE 3. The Riemann problem for the Euler equa-
Zalesak [10], using 100 equally spaced grid points in [1, tions of gas dynamics is solved with the initial conditions
1] with (Sod problem [11]):

(rL, uL, pL) 5 (1, 0, 1), (rR, uR, pL) 5 (0.125, 0, 0.1). (60)
u0(x) 5 H1, 2Ag # x # Ag,

0, otherwise;
(52)

In this calculation we used the characteristic interpolations
u0(x) 5 e2300x2

; (53) with 100 grid points, CFL 5 0.2, and 200 time steps. The
results are given in Fig. 6. Compared with the results [8,
9] calculated by ENO schemes, our resolution of the cor-u0(x) 5 H(1 2 (A:d x)2)1/2, uxu , a;D ,

0, otherwise.
(54)

ners of rarefaction waves (discontinuities in derivatives)
are improved.

In Fig. 7 we repeat the calculation in Fig. 6 with compo-The fourth is used by Harten et al. [6]:
nent-wise interpolation that is simpler and much more
efficient than characteristic interpolation. Some ‘‘noises’’
appear in Fig. 7 which, however, may be considered accept-
able for practical calculations.u0(x 1 0.5) 5 5

2x sin(Dsfx2), 21 # x , 2Ad,

usin(2fx)u, uxu , Ad,

2x 2 1 2 sin(3fx)/6, Ad , x , 1.

(55)

EXAMPLE 4. These are the same equations as in Exam-
ple 3 with the initial conditions

We take CFL 5 0.4 in this example Figs. 1a–d show
solutions at t 5 2. From these figures we see that the
scheme develops accurate solutions in the smooth regions U 0(x) 5 5

UL, 0 # x , 0.1,

UM, 0.1 # x , 0.9,

UR, 0.9 # x , 1,

(61)
and captures the discontinuities in a nonoscillatory man-
ner, except for a little smearing. No special techniques to
sharpen these discontinuities are used in the calculations.

In order to see the convergence rate of the schemes in where
smooth regions, we show the error convergence rates with
mesh refreshment in Figs. 2a–b with smooth initial condi- rL 5 rM 5 rR 5 1, uL 5 uM 5 uR 5 0,
tions:

pL 5 103, pM 5 1022, pR 5 102.

u0(x) 5 sin(2fx) (56)
A solid boundary condition is applied to both ends; see

u0(x) 5 sin4(2fx). (57) [12] for details.
In this example the shock waves are very strong and

complicated interactions of various waves are encounteredWe see that all errors monotonically decrease with the
mesh size. Figures 3a–b show the solutions in [20.5, 0.5] as discussed in [12]. The third-order accurate scheme is

used to solve this problem with a1 5 a2 5 0, b 5 1, andat t 5 2 with 100 grid points.
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FIG. 9. Numerical solutions of shock/turbulence interactions: (a) 200 grid points; (b) 400 grid points.

CFL 5 0.4. The characteristic interpolations are used in This is a model problem for ‘‘shock/turbulence’’ interac-
tion. See [13] for a linearized analysis of this problem, andthe calculations.

In Figs. 8a–h we show the solution with 400 grid points [8, 14] for numerical results. We apply our third-order
scheme to this problem with a1 5 a2 5 0.5, b 5 1.0, andat t 5 0.01, 0.016, 0.026, 0.028, 0.030, 0.032, 0.034, and

0.038, respectively. The continuous line in Fig. 8 is the CFL 5 0.4. The characteristic interpolations are also used
in the calculation. The results for 200 and 400 grid pointssolution with 1000 grid points. Comparing this solution to

the ‘‘exact’’ solution of Woodward and Collella in [12], are shown in Fig. 9. The solid lines are numerical solutions
with 1600 grid points. It can be regarded as the exact so-we see that it shows all the important features of various

interactions and thus can be considered a ‘‘converged’’ lution.
solution. In the calculation we found the pressure at some

6. CONCLUDING REMARKSgrid points cannot preserve positive solution, and lower
order interpolation was used at these points.

A new methodology has been developed to construct
EXAMPLE 5. To see the performance of our schemes compact high-order accurate nonlinear schemes for captur-

for the problems that have some structure, we apply it to ing discontinuities. These schemes work well both for
Euler equations with the initial conditions: smooth solutions and for capturing discontinuities in our

numerical calculations of scalar conservation laws. We also
discussed the extensions to Euler equations. The numerical(r, u, p) 5 H(3.857143, 2.629369, 10.33333), x , 4,

(1 1 0.2 sin 5x, 0, 1), x $ 4.
(62)

solutions of the one-dimensional shock tube problem, blast
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3. X. G. Deng, H. Maekawa, and C. Shen, AIAA Paper 96-1972; inwaves, and ‘‘shock/turbulence’’ interactions are presented.
27th AIAA Fluid Dynamics Conference, New Orleans, June 1996.From these results, we see that the schemes give clear

4. A. Harten, J. Comput. Phys. 41, 329 (1981).structures of various waves and wave interactions. In the
5. B. Cockburn and C. W. Shu, SIAM J. Numer. Anal. 31, No. 3, 607calculations it was found that a slight undershoot of solu-

(1994).tions near shock waves appeared at some time steps which
6. A. Harten, B. Engquist, S. Osher, and S. Chakravarthy, J. Comput.may be caused by high-order truncation errors of the inter-

Phys. 71, 213 (1987).
polations. Moreover, in the present paper the compact

7. C. W. Shu and S. Osher, J. Comput. Phys. 77, 439 (1988).adaptive interpolations are constrained to tridiagonal ma-
8. C. W. Shu and S. Osher, J. Comput. Phys. 83, 32 (1989).trix inversion. Hence only third- and fourth-order schemes
9. C. W. Shu, J. Sci. Comput. 5, No. 2, 127 (1990).have been constructed. Higher-order schemes, as well as

10. S. Zalesak, ‘‘A Preliminary Comparison of Modern Shock-Capturingthe applications to multidimensional problems, are un-
Schemes: Linear Advection,’’ in Advances in Computer Methods forder investigation.
Partial Differential Equations, Vol. 6, edited by R. Vichnevetsky and
R. Stepleman (IMACS, New Brunswick, NJ, 1987).
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